SnoN and Ski protooncoproteins are rapidly degraded in response to transforming growth factor beta signaling.

نویسندگان

  • Y Sun
  • X Liu
  • E Ng-Eaton
  • H F Lodish
  • R A Weinberg
چکیده

Transforming growth factor beta (TGF-beta) regulates a variety of physiologic processes, including growth inhibition, differentiation, and induction of apoptosis. Some TGF-beta-initiated signals are conveyed through Smad3; TGF-beta binding to its receptors induces phosphorylation of Smad3, which then migrates to the nucleus where it functions as a transcription factor. We describe here the association of Smad3 with the nuclear protooncogene protein SnoN. Overexpression of SnoN represses transcriptional activation by Smad3. Activation of TGF-beta signaling leads to rapid degradation of SnoN and, to a lesser extent, of the related Ski protein, and this degradation is likely mediated by cellular proteasomes. These results demonstrate the existence of a cascade of the TGF-beta signaling pathway, which, upon TGF-beta stimulation, leads to the destruction of protooncoproteins that antagonize the activation of the TGF-beta signaling.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Loss of c-myc repression coincides with ovarian cancer resistance to transforming growth factor beta growth arrest independent of transforming growth factor beta/Smad signaling.

Many epithelial carcinomas, including ovarian, are refractory to the antiproliferative effects of transforming growth factor (TGF) beta. In some cancers, TGF-beta resistance has been linked to TGF-beta receptor II (TbetaR-II) and Smad4 mutations; however, in ovarian cancer, the mechanism of resistance remains unclear. Primary ovarian epithelial cell cultures were used as a model system to deter...

متن کامل

Inability of transforming growth factor-beta to cause SnoN degradation leads to resistance to transforming growth factor-beta-induced growth arrest in esophageal cancer cells.

It is well established that loss of a growth inhibitory response to transforming growth factor-beta (TGF-beta) is a common feature of epithelial cancers including esophageal cancer. However, the molecular basis for the abrogation of this key homeostatic mechanism is poorly understood. In esophageal cancer cell lines that are resistant to TGF-beta-induced growth inhibition, TGF-beta also fails t...

متن کامل

Downregulation of SnoN expression in obstructive nephropathy is mediated by an enhanced ubiquitin-dependent degradation.

Smad transcriptional co-repressor SnoN acts as an antagonist that tightly controls the trans-activation of TGF-beta/Smad target genes. SnoN protein is reduced progressively in the fibrotic kidney after obstructive injury, suggesting that the loss of Smad antagonist is a critical event that leads to an uncontrolled fibrogenic signaling. However, the mechanism underlying SnoN downregulation remai...

متن کامل

Transforming growth factor-beta regulator SnoN modulates mammary gland branching morphogenesis, postlactational involution, and mammary tumorigenesis.

SnoN is an important negative regulator of transforming growth factor-beta (TGF-beta) signaling that was originally identified as a transforming oncogene in chicken embryonic fibroblasts. Both pro-oncogenic and antioncogenic activities of SnoN have been reported, but its function in normal epithelial cells has not been defined. In the mouse mammary gland, SnoN is expressed at relatively low lev...

متن کامل

The Proteasome Inhibitor, MG132, Attenuates Diabetic Nephropathy by Inhibiting SnoN Degradation In Vivo and In Vitro

Transforming growth factor-β (TGF-β) has been shown to be involved in diabetic nephropathy (DN). The SnoN protein can regulate TGF-β signaling through interaction with Smad proteins. Recent studies have shown that SnoN is mainly degraded by the ubiquitin-proteasome pathway. However, the role of SnoN in the regulation of TGF- β/Smad signaling in DN is still unclear. In this study, diabetic rats ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Proceedings of the National Academy of Sciences of the United States of America

دوره 96 22  شماره 

صفحات  -

تاریخ انتشار 1999